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Abstract. Let E : y2 = x(x − a2)(x + b2) be an elliptic curve with full 2-
torsion group, where a and b are coprime integers and 2(a2 + b2) is a square.
Assume that the 2-Selmer group of E has rank two. We characterize all qua-
dratic twists of E with Mordell-Weil rank zero and 2-primary Shafarevich-Tate
groups (Z/2Z)2, under certain conditions. We also obtain a distribution result
of these elliptic curves.

1. Introduction

In [Wan16], the first author used Cassels pairing to characterize all congruent
elliptic curves y2 = x3 − n2x with Mordell-Weil rank zero and second minimal 2-
primary Shafarevich-Tate group, where all prime divisors of n are congruent to 1
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modulo 4. The goal of this paper is to generalize this result to the quadratic twist
of particular elliptic curves with full 2-torsion.

Let (a, b, c) be a primitive triple of positive integers such that a2 + b2 = 2c2. By
elementary number theory, this is equivalent to say,

a = |α2 − 2αβ − β2|, b = |α2 + 2αβ − β2|, c = α2 + β2

for some coprime integers α, β with different parities. Denote by

E : y2 = x(x− a2)(x+ b2)

an elliptic curve with full 2-torsion group, and

E(n) : y2 = x(x− a2n)(x+ b2n)

a quadratic twist of E, where n is a positive square-free integer. When a = b = 1,
this is just the congruent elliptic curve.

1.1. Rank zero twists. When n > 1, denote by A the ideal class group of K =
Q(
√
−n) and

h2m(n) := dimF2
A2m−1

/A2m

its 2m-rank for a positive integer m. Denote by Sel2
(
E(n)/Q

)
the 2-Selmer group

of E(n) over Q.

Theorem 1.1 (=Theorems 4.2 and 4.4). Assume that Sel2(E/Q) ∼= (Z/2Z)2. Let
n ≡ 1 mod 8 be a positive square-free integer coprime to abc where each prime factor
of n is a quadratic residue modulo every prime factor of abc.

(A) If all prime factors of n are congruent to ±1 modulo 8, then the following
are equivalent:

(1) rank ZE
(n)(Q) = 0 and X(E(n)/Q)[2∞] ∼= (Z/2Z)2;

(2) h4(n) = 1 and h8(n) = 0.
(B) If all prime factors of n are congruent to 1 modulo 4, then the following are

equivalent:
(1) rank ZE

(n)(Q) = 0 and X(E(n)/Q)[2∞] ∼= (Z/2Z)2;
(2) h4(n) = 1 and h8(n) ≡ d−1

4 mod 2.
Here d is the odd part of d0 | 2n such that the ideal class [(d0,

√
−n)] is the non-trivial

element in A[2] ∩ A2.

Remark 1.2. (1) When (a, b) = (1, 1), (7, 23), (23, 47), (119, 167), (167, 223), (287, 359),
we have Sel2(E/Q) ∼= (Z/2Z)2.

(2) In Theorem 1.1(B), if h4(n) = 1, then the non-trivial element in A[2] ∩ A2

is [(d0,
√
−n)] for some positive divisor d0 of 2n. If d′0 is another positive divisor of

2n such that [(d0,
√
−n)] = [(d′0,

√
−n)], then d0d

′
0 = n or 4n. See §2.1.

We will first show that E(n)
tor (Q) ∼= (Z/2Z)2 in §2.2. In §3, we will study the

local solvability of homogeneous spaces and then express the 2-Selmer group as
the kernel of the generalized Monsky matrix Mn. Then we will give the proof of
Theorem 1.1 in §4. The strategy is similar to [Wan16].
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1.2. Distribution. Denote by
• Ck(x) the set of positive square-free integers n 6 x with exactly k prime

factors;
• Qk(x) the set of n ∈ Ck(x) coprime to abc such that each prime factor of
n ≡ 1 mod 8 is a quadratic residue modulo every prime factor of abc and
congruent to 1 modulo 4;

• Pk(x) the set of all n ∈ Qk(x) such that Theorem 1.1(B)(2) holds.
We will use the standard symbols in analytic number theory: ”∼,�, O(·), o(·),Li(x)”,
which can be found in [IR90]. The equidistribution property of Legendre symbols
in [Rho09] implies

(1.1) #Ck(x) ∼
x(log log x)k−1

(k − 1)! log x
.

Theorem 1.3. Assume that Sel2(E/Q) ∼= (Z/2Z)2. Then

#Pk(x) ∼ 2−kℓ−k−2
(
uk + (2−1 − 2−k)uk−1

)
·#Ck(x),

where ℓ is the number of different prime factors of abc and

uk :=
∏

16i6k/2

(1− 21−2i).

We will use the method in [CO89] to show the equidistribution property of
residue symbols in § 5.3 and then use this to prove Theorem 1.3 in § 6.

1.3. Notations. We will not list the notations appeared above.
• n = p1 · · · pk the prime decomposition of n.
• abc = qt11 · · · q

tℓ
ℓ the prime decomposition of abc.

• gcd(m1, . . . ,mt) the greatest common divisor of integers m1, . . . ,mt.
• Sel′2

(
E(n)

)
= Sel2

(
E(n)

)
/E(n)(Q)[2] the pure 2-Selmer group of E(n), see

(2.4).
• DΛ the homogeneous space associated to a rational triple (d1, d2, d3), see (2.2).
• (α, β)v the Hilbert symbol, α, β ∈ Q×

v .
• [α, β]v the additive Hilbert symbol, i.e., the image of (α, β)v under the

isomorphism {±1} ∼−→ F2.
•
(

α
β

)
=

∏
p|β(α, β)p the Jacobi symbol with p | β counted with multiplicity,

where gcd(α, β) = 1 and β > 0.
•
[
α
β

]
the additive Jacobi symbol, i.e., the image of

(
α
β

)
under the isomor-

phism {±1} ∼−→ F2.
• D(K) the set of positive square-free divisors of 2n.
• 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T.
• I the identity matrix and O the zero matrix.
• A = An a matrix associated to n, see (3.2).
• Rn the Rédei matrix of K = Q(

√
−n), see (2.1).

• Du = diag
{[

u
p1

]
, . . . ,

[
u
pk

]}
.

• bu = Du1 =
([

u
p1

]
, . . . ,

[
u
pk

])
.

• Mn the Monsky matrix associated to n, see (3.3).
• Mn the generalized Monsky matrix associated to E(n), see (3.4).
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• I =
√
−1.

• P the set of primary primes of Z[I] with positive imaginary part.
•
(

α
λ

)
2

the quadratic residue symbol over Z[I], see (5.1).

•
(

α
λ

)
4

the quartic residue symbol over Z[I], see (5.2).

•
(

a
d

)
4
:=

(
a
λ

)
4

the rational quartic residue symbol, see (5.3).
• Λ(a) the Mangoldt function, see (5.4).
• χ0 the trivial character modulo a given integral ideal, see § 5.2.
• ψ(x, χ) =

∑
Na6x χ(a)Λ(a), see (5.5).

• Ck(x, α,B), C ′
k(x, α,B), Tk(x), T

′
k(x) sets associated to x, α,B, see § 5.3.

•
(
k
2

)
= k(k − 1)/2 the binomial coefficient.

2. Preliminaries

2.1. Gauss genus theory. In this subsection, we will recall Gauss genus theory,
which can be found in [Wan16, § 3] for details. For our purpose, assume that
n = p1 · · · pk ≡ 1 mod 4. Denote by A the ideal class group of K = Q(

√
−n).

Denote by D(K) the set of positive square-free divisors of 2n. The classical Gauss
genus theory tells that

A[2] =
{
[(d,
√
−n)] : d ∈ D(K)

}
and h2(n) = dimF2 A[2] = t− 1.

Denote by pk+1 = 2 and define the Rédei matrix
(2.1) Rn =

(
[pj ,−n]pi

)
i,j
∈Mk×(k+1)(F2).

Proposition 2.1 ([Red34]). We have
KerRn

∼←− D(K) ∩NK/QK
× −→ A[2] ∩ A2(

vp1
(d), . . . , vpk+1

(d)
)
←− [ d 7−→ [(d,

√
−n)],

where the second arrow is a two-to-one onto homomorphism with kernel {1, n}.
Hence h4(n) = k − rankRn.

Proposition 2.2 ([Wan16, Proposition 3.6]). For any 2rd ∈ D(K) ∩ NK/QK
×

with odd d, let (α, β, γ) be a primitive triple of positive integers satisfying

dα2 +
n

d
β2 = 2rγ2.

Then [(2rd,
√
−n)] ∈ A4 if and only if

bγ =
([ γ
p1

]
, . . . ,

[ γ
pk

])T

∈ ImRn.

2.2. Torsion subgroup.

Proposition 2.3. For any positive square-free integer n, E(n)
tor (Q) ∼= (Z/2Z)2.

Lemma 2.4 ([Ono96]). Let E : y2 = x(x − a)(x + b) be an elliptic curve with
a, b ∈ Z.

(1) E(Q) has a point of order 4 if and only if one of the three pairs (−a, b), (a, a+
b) and (−b,−a− b) consists of squares of integers.

(2) E(Q) has a point of order 3 if and only if there exist integers d, u, v such
that gcd(u, v) = 1, d2u3(u + 2v) = −a, d2v3(v + 2u) = b and u/v 6∈
{−2,−1/2,−1, 1, 0}.
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Proof of Proposition 2.3. Since E(n) has full rational 2-torsion, E(n)
tor (Q) contains

a subgroup isomorphic to (Z/2Z)2. By Mazur’s classification theorem [Maz77,
Maz78], one have

E
(n)
tor (Q) ∼= Z/2Z⊕ Z/2NZ

for some N ∈ {1, 2, 3, 4}. We only need to show that E(n)(Q) contains no point of
order 4 or 3.

Since the three pairs in Lemma 2.4(1) are (−a2n, b2n), (a2n, 2c2n) and (−b2n,−2c2n),
E(n)(Q) contains no point of order 4.

Assume that there are integers d, u, v such that gcd(u, v) = 1,
d2u3(u+ 2v) = −a2n and d2v3(v + 2u) = b2n.

Clearly, d2 = 1 and n = gcd(u+2v, v+2u) = gcd(3, u− v) = 1 or 3. Since a and b
are odd, so is u, v. We may assume that v > 0, then u < 0. Since n | (u+2v, v+2u),
we may write v = α2, u = −β2. Then (α2 − 2β2)/n and (2α2 − β2)/n are squares,
which is impossible by modulo 8. Hence E(n)(Q) contains no point of order 3 by
Lemma 2.4(2). �

2.3. Cassels pairing. As shown in [Cas98], the 2-Selmer group Sel2
(
E(n)

)
can be

identified with{
Λ = (d1, d2, d3) ∈

(
Q×/Q×2

)3
: DΛ(AQ) 6= ∅, d1d2d3 ≡ 1 mod Q×2

}
,

where DΛ is a genus one curve defined by

(2.2)


H1 : −b2nt2 + d2u

2
2 − d3u23 = 0,

H2 : −a2nt2 + d3u
2
3 − d1u21 = 0,

H3 : 2c2nt2 + d1u
2
1 − d2u22 = 0.

Under this identification, the points O, (a2n, 0), (−b2n, 0), (0, 0) and non-torsion
(x, y) ∈ E(n)(Q) correspond to
(2.3) (1, 1, 1), (2, 2n, n), (−2n, 2,−n), (−n, n,−1)
and (x− a2n, x+ b2n, x) respectively.

Cassels in [Cas98] defined a skew-symmetric bilinear pairing 〈−,−〉 on the F2-
vector space
(2.4) Sel′2

(
E(n)

)
:= Sel2

(
E(n)

)
/E(n)(Q)[2].

We will write it additively. For any Λ ∈ Sel2
(
E(n)

)
, choose P = (Pv) ∈ DΛ(AQ).

SinceHi is locally solvable everywhere, there existsQi ∈ Hi(Q) by Hasse-Minkowski
principle. Let Li be a linear form in three variables such that Li = 0 defines the
tangent plane of Hi at Qi. Then for any Λ′ = (d′1, d

′
2, d

′
3) ∈ Sel2

(
E(n)

)
, define

〈Λ,Λ′〉 =
∑
v

〈Λ,Λ′〉v ∈ F2, where 〈Λ,Λ′〉v =

3∑
i=1

[
Li(Pv), d

′
i

]
v
.

This pairing is independent of the choice of P and Qi, and is trivial on E(n)(Q)[2].

Lemma 2.5 ([Cas98, Lemma 7.2]). The local Cassels pairing 〈Λ,Λ′〉p = 0 if
• p - 2∞,
• the coefficients of Hi and Li are all integral at p for i = 1, 2, 3, and
• modulo DΛ and Li by p, they define a curve of genus 1 over Fp together

with tangents to it.
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Lemma 2.6. The following are equivalent:
(1) rank ZE

(n)(Q) = 0 and X(E(n)/Q)[2∞] ∼= (Z/2Z)2t;
(2) Sel′2

(
E(n)

) ∼= (Z/2Z)2t and the Cassels pairing on Sel′2
(
E(n)

)
is non-

degenerate.

Proof. Note that E(n)(Q)[2] = (Z/2Z)2 by Proposition 2.3. The proof is similar to
[Wan16, p. 2157]. �

3. 2-descent method

3.1. Homogeneous spaces.

Lemma 3.1. Let n be a positive square-free integer prime to 2abc and Λ =
(d1, d2, d3), where d1, d2, d3 are square-free integers.

(1) If p - 2abcn, then DΛ(Qp) 6= ∅ if and only if p - d1d2d3.
(2) If DΛ(Q2) 6= ∅, then d1 and d2 have the same parity.
(3) If both of d1 and d2 are odd, then DΛ(Q2) 6= ∅ if and only if either 4 |

d1 − 1, 8 | d1 − d2 or 4 | d1 + n, 8 | d1 − d2 + 2n.
(4) DΛ(R) 6= ∅ if and only if d2 > 0.

Proof. Certainly, gcd(d1, d2, d3) = 1. Since we are dealing with homogeneous equa-
tions, we may assume that u1, u2, u3 and t are p-adic integers and at least one of
them is a p-adic unit.

(1) By classical descent theory, see [Sil09, Theorem X.1.1, Corollary X.4.4].
(2) Suppose that DΛ(Q2) 6= ∅. If 2 | d1, 2 - d2, then 2 | d3. We have 2 | u2 by

H3 and 2 | t by H1. Then 2 | u3 by H1 and 2 | u1 by H2, which is impossible. The
case 2 - d1, 2 | d2 is similar. Hence d1 and d2 have the same parity.

(3) If DΛ(Q2) 6= ∅, then both of u1, u2 are odd by H3 and exactly one of t and
u3 is even by H2. If t is even and u3 is odd, then 4 | d1−d3, 8 | d1−d2 by H2 mod 4
and H3 mod 8. Note that if 8 | d1 − d2, then d3 ≡ d1d2 ≡ 1 mod 8. If t is odd and
u3 is even, then 4 | d1 + n, 8 | d1 − d2 + 2n by H2 mod 4 and H3 mod 8.

Conversely, if 4 | d1 − 1, 8 | d1 − d2, then d3 ≡ d1d2 ≡ 1 mod 8. Take
• t = 0, u1 =

√
1/d1, u2 =

√
1/d2, u3 =

√
1/d3 if 8 | d1 − 1;

• t = 2, u1 = 1, u2 =
√
(d1 + 8c2n)/d2, u3 =

√
(d1 + 4a2n)/d3 if 8 | d1 − 5.

If 4 | d1 + n, 8 | d1 − d2 + 2n, take
• t = 1, u1 =

√
−a2n/d1, u2 =

√
b2n/d2, u3 = 0 if 8 | d1 + n;

• t = 1, u1 =
√
(4d3 − a2n)/d1, u2 =

√
(4d3 + b2n)/d2, u3 = 2 if 8 | d1+n+4.

(4) Suppose that DΛ(R) 6= ∅. If d2 < 0, then d3 < 0 by H1. Thus d1 > 0 by
d1d2d3 ∈ Q×2 and d1 < 0 by H2, which is impossible. Hence d2 > 0. Another
direction is trivial. �

Assume that n is a positive square-free integer prime to 2abc. By Lemma 3.1 and
(2.3), any element of the pure 2-Selmer group Sel′2

(
E(n)

)
has a unique representative

Λ = (d1, d2, d3), where d1, d2, d3 are positive square-free integers dividing nabc. In
the rest part of this article, Λ is always assumed to be in this form and we will
write Λ = (d1, d2, d3) ∈ Sel′2

(
E(n)

)
for simplicity.

Lemma 3.2. Let n be a positive square-free integer prime to 2abc and Λ =
(d1, d2, d3). Let p be a prime factor of n. Then DΛ(Qp) 6= ∅ if and only if

•
(

d1

p

)
=

(
d2

p

)
= 1, if p - d1, p - d2;
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•
(

2d1

p

)
=

(
2n/d2

p

)
= 1, if p - d1, p | d2;

•
(

−2n/d1

p

)
=

(
2d2

p

)
= 1, if p | d1, p - d2;

•
(

−n/d1

p

)
=

(
n/d2

p

)
= 1, if p | d1, p | d2.

Proof. Assume that p - d1d2, then p - d3. If DΛ(Qp) 6= ∅, then
(

d2d3

p

)
=

(
d1d3

p

)
= 1

by H2 and H3. That’s to say,
(

d1

p

)
=

(
d2

p

)
= 1. Conversely, if

(
d1

p

)
=

(
d2

p

)
= 1,

then
(
0,
√
1/d1,

√
1/d2,

√
1/d3

)
∈ DΛ(Qp). The rest cases can be proved similarly

as in the congruent elliptic curve case, see [HB94, Appendix]. �

Lemma 3.3. Let n be a positive square-free integer prime to 2abc and Λ =
(d1, d2, d3). Let p be a prime factor of abc.

(1) If p | a, then DΛ(Qp) 6= ∅ if and only if one of the following cases holds:
• p - d2, p - d1,

(
d2

p

)
= 1;

• p - d2, p | d1,
(

d2

p

)
=

(
n
p

)
= 1.

(2) If p | b, then DΛ(Qp) 6= ∅ if and only if one of the following cases holds:
• p - d1, p - d2,

(
d1

p

)
= 1;

• p - d1, p | d2,
(

d1

p

)
=

(
−n
p

)
= 1.

(3) If p | c, then DΛ(Qp) 6= ∅ if and only if one of the following cases holds:
• p - d3, p - d1,

(
d3

p

)
= 1;

• p - d3, p | d1,
(

d3

p

)
=

(
n
p

)
= 1.

Proof. Let p be a prime factor of a.
Suppose that DΛ(Qp) 6= ∅. If p | d2, then p divides exactly one of d1 and d3. We

may assume that p | d1 and p - d3. Then p divides u3, t by H2,H3 and then u2, u1
by H1,H2. So p | gcd(t, u1, u2, u3), which will cause a contradiction. Hence p - d2.

Suppose that p - d1, p - d3. If DΛ(Qp) 6= ∅, then
(

d1d3

p

)
=

(
d2

p

)
= 1 by H2.

Conversely, if
(

d2

p

)
= 1, then we may take

u1 = d2/ gcd(d1, d2),

u23 = d2 + a2nt2/d3 ≡ d2 mod p,

u22 = d3 + 2c2nt2/d2,

where t ∈ Zp such that d3 + 2c2nt2/d2 is a square in Zp. In fact, if −2nd3 is
quadratic residue modulo p, then we may take t =

√
− d2d3

2c2n and u2 = 0; if −2nd1
is not a quadratic residue modulo p, then there exists t ∈ {0, 1, . . . , (p− 1)/2} such
that d3 + 2c2nt2/d2 mod p is a nonzero square. Hence DΛ(Qp) is non-empty.
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Suppose that p | d1, p | d3. If DΛ(Qp) 6= ∅, then
(

d2n
p

)
= 1 by H1 and

(
d2

p

)
= 1

by H2. Conversely, if
(

d2

p

)
=

(
n
p

)
= 1, then we may take t = 1 and

u1 = d2/ gcd(d1, d2),

u23 = d2 + a2n/d3 ≡ d2 mod p,

u22 = d3 + 2c2n/d2 ≡ b2n/d2 mod p.

Hence DΛ(Qp) is non-empty.
The rest cases can be proved similarly. �

Lemma 3.4. Let n be a positive square-free integer prime to 2abc and Λ =
(d1, d2, d3). If DΛ(Qv) 6= ∅ for all places v 6= 2, then DΛ(Q2) is also non-empty.

Proof. Since DΛ(Qv) 6= ∅ for all places v 6= 2, each Hi is locally solvable at v 6= 2.
By the product formula of Hilbert symbols, Hi is locally solvable at 2. In other
words,

[nd2, d2d3]2 = [−nd1, d3d1]2 = [2nd2, d1d2]2 = 0.

Then [nd2, d1]2 = [−nd1, d2]2 = 0.
• If d1 ≡ d2 mod 4, then [−n, d1]2 = [n, d2]2 = [2, d1d2]2 = 0, which forces

4 | d1 − 1 and 8 | d1 − d2.
• If d1 ≡ −d2 mod 4, then [n, d1]2 = [−n,−d1]2 = 0 and n ≡ −d1 ≡ d2 mod
4. Since [2, d1d2]2 = [2nd2, d1d2]2 = 0, we have d1d2 ≡ −1 mod 8. In other
words, 4 | d1 + n and 8 | d1 − d2 + 2n.

Hence DΛ(Q2) 6= ∅ by Lemma 3.4(3). �

3.2. Matrix representation. By the results in the previous subsection, we can
express the pure 2-Selmer group Sel′2

(
E(n)

)
as the kernel of a matrix. For our

purpose, we assume that n is prime to abc and each prime factor of n is a quadratic
residue modulo every prime factor of abc.

Denote by n = p1 · · · pk and

(3.1) a = qt11 · · · q
tℓ1
ℓ1
, b = q

tℓ1+1

ℓ1+1 · · · q
tℓ2
ℓ2
, c = q

tℓ2+1

ℓ2+1 · · · q
tℓ
ℓ

the prime decompositions respectively, where all ti > 0 and 0 6 ℓ1 6 ℓ2 6 ℓ.
Let Λ = (d1, d2, d3) ∈ Sel′2

(
E(n)

)
where d1, d2, d3 are positive square-free integers

dividing nabc. By Lemma 3.3, we have gcd(a, d2) = gcd(b, d1) = gcd(c, d3) = 1. In
other words, d1 | nac, d2 | nbc and d3 | nab. So we may write

d1 = px1
1 · · · p

xk

k · q
z1
1 · · · q

zℓ1
ℓ1
· qzℓ2+1

ℓ2+1 · · · q
zℓ
ℓ ,

d2 = py1

1 · · · p
yk

k · q
zℓ1+1

ℓ1+1 · · · q
zℓ2
ℓ2
· qzℓ2+1

ℓ2+1 · · · q
zℓ
ℓ ,

d3 ≡ px1+y1

1 · · · pxk+yk

k · qz11 · · · q
zℓ1
ℓ1
· qzℓ1+1

ℓ1+1 · · · q
zℓ2
ℓ2

mod Q×2.

Denote by
x = (x1, . . . , xk)

T, y = (y1, . . . , yk)
T ∈ Fk

2 ,

and
z = (z1, . . . , zℓ1 , zℓ1+1, . . . , zℓ2 , zℓ2+1, . . . , zℓ)

T ∈ Fℓ
2.

Denote by F1 F2 F3

F4 F5 F6

F7 F8 F9

 =
(
[qj , qi]qi

)
i,j
∈Mℓ(F2),
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where F1 ∈Mℓ1(F2) and F5 ∈Mℓ2−ℓ1(F2). Denote by

M1 =


F2 F3

F4 F6

F7 F8

∆

 ∈M(ℓ+ℓ2−ℓ1)×ℓ(F2),

where
∆ = diag

([ −1
qℓ1+1

]
, · · · ,

[−1
qℓ2

])
.

Lemma 3.5. Notations as above. The map (d1, d2, d3) 7→ z induces an isomor-
phism

Sel′2(E)
∼−→ KerM1.

Proof. In the language of linear algebra, Lemma 3.3 tells that
(1) (O,F2,F3)z = 0;
(2) (F4,O,F6)z = 0 and ∆(zℓ1+1, . . . , zℓ2)

T = 0;
(3) (F7,F8,O)z = 0.

The result then follows from Lemmas 3.1(4) and 3.4 by noting that n = 1. �

Denote by

Du = diag

{[ u
p1

]
, · · · ,

[ u
pk

]}
∈Mk(F2),

(3.2) A = An =
(
[pj ,−n]pi

)
i,j
∈Mk(F2)

and
(G1,G2,G3) =

(
[qj ,−n]pi

)
i,j
∈Mk×ℓ(F2),

where G1 ∈Mk×ℓ1(F2) and G2 ∈Mk×(ℓ2−ℓ1)(F2). Denote the Monsky matrix by

(3.3) Mn =

(
A+D−2 D2

D2 A+D2

)
and the generalized Monsky matrix by

(3.4) Mn =

(
Mn G

M1

)
, where G =

(
G1 G3

G2 G3

)
.

See [HB94, Appendix].

Proposition 3.6. Notations as above. The map (d1, d2, d3) 7→

x
y
z

 induces an

isomorphism
Sel′2

(
E(n)

) ∼−→ KerMn.

Proof. This follows from Lemmas 3.1(4), 3.2, 3.3, 3.4 and 3.5 with
(

n
q

)
= 1. �

4. Second minimal Shafarevich-Tate group

In this section, n = p1 · · · pk ≡ 1 mod 8 is a positive square-free integer prime to
abc where each pi is a quadratic residue modulo every prime factor of abc.
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4.1. Proof of Theorem 1.1(A).

Lemma 4.1. Assume that each pi ≡ ±1 mod 8. Let d = (s1, · · · , sk)T be a column
vector in Fk

2 and d = ps11 · · · p
sk
k .

(1) d ∈ Ker (A+D−1) if and only if d+
[
−1
d

]
1 ∈ KerAT.

(2) Assume that Sel2(E/Q) ∼= (Z/2Z)2. Then dimF2
Sel′2

(
E(n)

)
= 2 if and only

if h4(n) = 1. In which case, Sel′2
(
E(n)

)
is generated by (2, 2, 1) and (d, 1, d),

where Ker (A+D−1) = {0,d}.

Proof. (1) We may rearrange the ordering of the prime factors pi such that p1 ≡

· · · ≡ pk′ ≡ −1 mod 8 and pk′+1 ≡ · · · ≡ pk ≡ 1 mod 8. Then b−1 =

(
1′

0

)
, where

1′ ∈ Fk′

2 . By the quadratic reciprocity law, one can show that

AT = A+D−1 + b−1b
T
−1.

Since n ≡ 1 mod 8, k′ is even and bT
−11 = 1Tb−1 = bT

−1b−1 = k′ = 0 ∈ F2. Since
A1 = 0, we have

AT1 = (A+D−1 + b−1b
T
−1)1 = b−1

and
AT(I+ 1bT

−1) = AT + b−1b
T
−1 = A+D−1.

Hence d ∈ Ker (A+D−1) if and only if

(I+ 1bT
−1)d = d+ (bT

−1d)1 = d+
[−1
d

]
1 ∈ KerAT.

(2) Since dimF2
Sel′2(E) = 0, we have KerM1 = 0 by Lemma 3.5. By Proposition

3.6, dimF2
Sel′2

(
E(n)

)
= 2 if and only if the rank of

Mn = diag{A+D−1,A}

is 2k − 2. By (1), we have rankA = rank (A+D−1) and then

dimF2 Sel
′
2

(
E(n)

)
= 2 ⇐⇒ rankA = k − 1.

Note that the Rédei matrix of Q(
√
−n) is Rn = (A,0). Then h4(n) = 1 if and only

if rankA = k − 1 by Proposition 2.1.
If rankA = k − 1, then KerA = {0,1}. Hence

KerMn =


0
0
0

 ,

0
1
0

 ,

d
0
0

 ,

d
1
0

.
In other words, Sel′2

(
E(n)

)
is generated by (1, n, n) and (d, 1, d). Conclude the result

by the fact that (1, n, n)− (2, 2, 1) = (2, 2n, n) corresponds a torsion, see (2.3). �

Theorem 4.2. Assume that Sel2(E/Q) ∼= (Z/2Z)2. Let n be a positive square-free
integer prime to abc where each prime factor of n is a quadratic residue modulo
every prime factor of abc. If all prime factors of n ≡ 1 mod 8 are congruent to ±1
modulo 8, then the following are equivalent:

(1) rank ZE
(n)(Q) = 0 and X(E(n)/Q)[2∞] ∼= (Z/2Z)2;

(2) h4(n) = 1 and h8(n) = 0.
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Proof. By Lemma 2.6, (1) is equivalent to say, Sel′2
(
E(n)

)
has dimension 2 and the

Cassels pairing on it is non-degenerate. By Lemma 4.1(2), dimF2
Sel′2

(
E(n)

)
= 2 if

and only if h4(n) = 1.
Since all prime factors of n are congruent to ±1 modulo 8, 2 is a norm and there

exists a primitive triple (α, β, γ) of positive integers such that

α2 + nβ2 = 2γ2.

It’s easy to see that all of α, β, γ are odd.
Assume that h4(n) = 1. Then by Lemma 4.1(2), Sel′2

(
E(n)

)
is generated by

Λ = (2, 2, 1) and Λ′ = (d, 1, d). Recall that DΛ is
H1 : −b2nt2 + 2u22 − u23 = 0,

H2 : −a2nt2 + u23 − 2u21 = 0,

H3 : c2nt2 + u21 − u22 = 0.

Choose
Q1 = (β, bγ, bα) ∈ H1(Q), L1 = bnβt− 2γu2 + αu3,

Q3 = (0, 1, 1) ∈ H3(Q), L3 = u1 − u2.
By Lemma 2.5, we have

〈Λ,Λ′〉 =
∑

p|2nabc

[
L1L3(Pp), d

]
p

for any Pp ∈ DΛ(Qp). Since
(

pi

q

)
= 1 for any prime q | abc, we have

(
d
q

)
= 1 and

〈Λ,Λ′〉q = 0.
For p | n, α2 ≡ 2γ2 mod p. We may take

√
2 ∈ Qp such that

√
2γ ≡ α mod p.

Take Pp = (t, u1, u2, u3) = (0, 1,−1,
√
2), then

L1L3(Pp) = 2(2γ +
√
2α) ≡ 8γ mod p

and
〈Λ,Λ′〉p =

[
L1L3(Pp), d

]
p
= [γ, d]p.

Note that n(bβ)2 − (aα)2 = 2(b2γ2 − c2α2) ≡ 0 mod 16, we may take
√
n ∈ Q2

such that bβ
√
n ≡ aα mod 8. Take P2 = (1, 0, c

√
n,−a

√
n), then

L1L3(P2) = −c
√
n(bnβ − 2cγ

√
n− aα

√
n) = 2c2nγ + cn(aα− bβ

√
n)

and
〈Λ,Λ′〉2 =

[
L1L3(P2), d

]
2
= [2c2nγ, d]2 = [γ, d]2 =

[−1
d

][−1
γ

]
.

Since α2 ≡ −nβ2 mod γ, we have
(

−1
γ

)
=

(
n
γ

)
=

(
γ
n

)
. Hence

〈Λ,Λ′〉 =
∑
p|n

〈Λ,Λ′〉p + 〈Λ,Λ′〉2 =
[γ
d

]
+
[−1
d

][γ
n

]
.

Since Rn = (A,0), we have A[2] ∩ A2 =
{[
(1)

]
,
[
(2,
√
−n)

]}
. Since KerAT ={

0,d+
[
−1
d

]
1
}

by Lemma 4.1(1), we have

ImRn = ImA =

{
u : uT

(
d+

[−1
d

]
1
)
= 0

}
.
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By Proposition 2.2, [(2,
√
−n)] ∈ A4 if and only if

bγ =

([ γ
p1

]
, . . . ,

[ γ
pk

])T

∈ ImRn,

if and only if

〈Λ,Λ′〉 =
[γ
d

]
+
[−1
d

][γ
n

]
= bT

γ

(
d+

[−1
d

]
1
)
= 0.

In conclusion, the Cassels pairing is non-degenerate if and only if h8(n) = 0. �

4.2. Proof of Theorem 1.1(B).

Lemma 4.3. Assume that each pi ≡ 1 mod 4 and Sel2(E/Q) ∼= (Z/2Z)2. Let
d = (s1, · · · , sk)T be a column vector in Fk

2 and d = ps11 · · · p
sk
k .

(1) dimF2
Sel′2

(
E(n)

)
= 2 if and only if h4(n) = 1. In which case, rankA = k−2

or k − 1.
(2) If h4(n) = 1 and rankA = k − 2, then Sel′2

(
E(n)

)
is generated by (d, d, 1)

and (−1, 1,−1), where KerA = {0,1,d,d+ 1}. Moreover, d ≡ 5 mod 8.
(3) If h4(n) = 1 and rankA = k−1, then Sel′2

(
E(n)

)
is generated by (2d, 2d, 1)

and (−1, 1,−1), where Ad = b2.

Proof. Similar to the proof of Lemma 4.1(2), we have KerM1 = 0. It suffices
to show that rankMn = 2k − 2 if and only if the Rédei matrix Rn = (A,b2)
has rank k − 1 by Proposition 2.1. Since A1 = 0, we have rankA 6 k − 1. If
rankMn = 2k − 2, then

2k − 2 = rank

(
A+D2 D2

D2 A+D2

)
= rank

(
A D2

A

)
6 k + rankA

and rankA > k − 2. If rankRn = k − 1, then clearly rankA > k − 2.
Suppose that rankA = k − 2. If rankMn = 2k − 2, then b2 /∈ ImA. Otherwise

assume that Aa = b2, then

KerMn ⊇
{(

u
u

)
,

(
u+ a

u+ a+ 1

)
: u ∈ KerA

}
has at least 8 elements, which is impossible. Therefore, rankRn = rank (A,b2) =
k−1. Conversely, if rankRn = k− 1, then b2 /∈ ImA. Since n ≡ 1 mod 8, we have
1Tb2 = 0. Note that A is symmetric, we have

ImA =
{
u : 1Tu = dTu = 0

}
,

dTb2 = 1 and 1TD2(d+ 1) = 1TD2d = bT
2 d = 1. Hence D21,D2d,D2(d+ 1) /∈

ImA. If
(
x
y

)
∈ KerMn, then x + y ∈ KerA and D2(x + y) = Ax. This

forces x + y = 0 and x = y ∈ KerA. Hence #KerMn = #KerA = 4 and
rankMn = 2k − 2. In this case,

KerMn =


0
0
0

 ,

1
1
0

 ,

d
d
0

 ,

d+ 1
d+ 1
0

.
In other words, Sel′2

(
E(n)

)
is generated by (n, n, 1) and (d, d, 1). Since dTb2 = 1,

we have
(

2
d

)
= 1 and d ≡ 5 mod 8.
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Suppose that rankA = k− 1. Then KerA = {0,1} and ImA =
{
u : 1Tu = 0

}
.

Since n ≡ 1 mod 8, we have 1Tb2 = 0 and b2 ∈ ImA. Thus rankRn = k − 1,
h4(n) = 1 and

KerMn =


0
0
0

 ,

1
1
0

 ,

 d
d+ 1
0

 ,

d+ 1
d
0

.
In this case, Sel′2

(
E(n)

)
is generated by (n, n, 1) and (d, nd, n).

Conclude the result by the fact that (n, n, 1) − (−1, 1,−1) = (−n, n,−1) and
(d, nd, n)− (2d, 2d, 1) = (2, 2n, n) correspond torsions, see (2.3). �

Theorem 4.4. Assume that Sel2(E/Q) ∼= (Z/2Z)2. Let n be a positive square-free
integer prime to abc where each prime factor of n is a quadratic residue modulo
every prime factor of abc. If all prime factors of n ≡ 1 mod 8 are congruent to 1
modulo 4, then the following are equivalent:

(1) rank ZE
(n)(Q) = 0 and X(E(n)/Q)[2∞] ∼= (Z/2Z)2;

(2) h4(n) = 1 and h8(n) ≡ d−1
4 mod 2.

Here d is the odd part of d0 | 2n such that the ideal class [(d0,
√
−n)] is the non-trivial

element in A[2] ∩ A2.

Proof. By Lemma 2.6, (1) is equivalent to say, Sel′2
(
E(n)

)
has dimension 2 and the

Cassels pairing on it is non-degenerate. By Lemma 4.3(1), dimF2
Sel′2

(
E(n)

)
= 2 if

and only if h4(n) = 1. Assume that h4(n) = 1.
(1) The case rankA = k − 2. By Lemma 4.3(2) and Proposition 2.1, we have

b2 /∈ ImA and D(K) ∩NK/QK
× = {1, n, d, n/d} with d = d0 ≡ 5 mod 8. Denote

by d′ = n/d ≡ 5 mod 8. Since d is a norm, there exists a primitive triple (α, β, γ)
of positive integers such that

dα2 + d′β2 = γ2.

If α is odd, then β is even and the triple

(α′, β′, γ′) =

(∣∣∣ (d− d′)α
2

+ d′β
∣∣∣, ∣∣∣ (d− d′)β

2
− dα

∣∣∣, (d+ d′)γ

2

)
is another primitive solution with even α′. Thus we may assume that α is even.
Then all of α/2, β, γ are odd since d′ ≡ 5 mod 8.

By Lemma 4.3(2), Sel′2
(
E(n)

)
is generated by Λ = (d, d, 1) and Λ′ = (−1, 1,−1).

Recall that DΛ is 
H1 : −b2nt2 + du22 − u23 = 0,

H2 : −a2nt2 + u23 − du21 = 0,

H3 : 2c2d′t2 + u21 − u22 = 0.

Choose
Q1 = (β, bγ, bdα) ∈ H1(Q), L1 = bd′βt− γu2 + αu3,

Q3 = (0, 1, 1) ∈ H3(Q), L3 = u1 − u2.
By Lemma 2.5, we have

〈Λ,Λ′〉 =
∑

p|2nabc∞

[
L1L3(Pp),−1

]
p
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for any Pp ∈ DΛ(Qp). For each p | n, we have p ≡ 1 mod 4 and then 〈Λ,Λ′〉p = 0.
Since for any q | c, we have −a2 = b2 − 2c2 ≡ b2 mod q, we have q ≡ 1 mod 4 and
then 〈Λ,Λ′〉q = 0.

Take P∞ = (t, u1, u2, u3) = (0, 1,−1,
√
d), then

L1L3(P∞) = 2(γ + α
√
d) > 0

and
〈Λ,Λ′〉∞ =

[
L1L3(P∞),−1

]
∞ = 0.

Take P2 = (2,
√
1− 8c2d′, 1,

√
d− 4b2n) where u1 ≡ 3 mod 8. Note that bd′β +

αu3/2 is even. We have
L1L3(P2) = (u1 − 1)(2bd′β + αu3 − γ)

and
〈Λ,Λ′〉2 =

[
L1L3(P2),−1

]
2
= [2,−1]2 + [−γ,−1]2 =

[−1
γ

]
+ 1.

Since dα2 ≡ −d′β2 mod γ, we have
(

−1
γ

)
=

(
n
γ

)
=

(
γ
n

)
and 〈Λ,Λ′〉2 =

[
γ
n

]
+ 1.

For q | ab, take Pq = (0, 1,−1,
√
d). Since γ2 − dα2 = d′β2, we may choose

√
d

such that q | (γ − α
√
d) if q | β. Then

L1L3(Pq) = 2(γ + α
√
d) ∈ Z×

q

and
〈Λ,Λ′〉q =

[
L1L3(Pq),−1

]
q
= 0.

Hence
〈Λ,Λ′〉 = 〈Λ,Λ′〉2 =

[γ
n

]
+ 1.

Since Rn = (A,b2), we have A[2] ∩ A2 =
{
[(1)], [(d,

√
−n)]

}
. Since b2 /∈ ImA

and A1 = 0, we have
ImRn =

{
u : 1Tu = 0

}
.

By Lemma 2.2, [(d,
√
−n)] ∈ A4 if and only if

bγ =
([ γ
p1

]
, . . . ,

[ γ
pk

])T

∈ ImRn,

if and only if
〈Λ,Λ′〉 =

[γ
n

]
+ 1 = 1Tbγ + 1 = 1.

In conclusion, the Cassels pairing is non-degenerate if and only if h8(n) = 1 =
[
2
d

]
.

(2) The case rankA = k − 1. By Lemma 4.3(3) and Proposition 2.1, we have
b2 ∈ ImA and D(K) ∩NK/QK

× = {1, n, 2d, 2n/d}. Denote by d′ = n/d. Since
d0 = 2d is a norm, there exists a primitive triple (α, β, γ) of positive integers such
that

dα2 + d′β2 = 2γ2.

It’s easy to see that all of α, β, γ are odd.
By Lemma 4.3(3), Sel′2

(
E(n)

)
is generated by Λ = (2d, 2d, 1) and Λ′ = (−1, 1,−1).

Recall that DΛ is 
H1 : −b2nt2 + 2du22 − u23 = 0,

H2 : −a2nt2 + u23 − 2du21 = 0,

H3 : c2d′t2 + u21 − u22 = 0.
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Choose
Q1 = (β, bγ, bdα) ∈ H1(Q), L1 = bd′βt− 2γu2 + αu3,

Q3 = (0, 1, 1) ∈ H3(Q), L3 = u1 − u2.
Similar to the case rankA = k − 2, we have

〈Λ,Λ′〉 =
∑

p|2ab∞

[
L1L3(Pp),−1

]
p

for any Pp ∈ DΛ(Qp).
For p =∞, take P∞ = (0, 1,−1,

√
2d). Then

L1L3(P∞) = 2(2γ + α
√
2d) > 0

and
〈Λ,Λ′〉∞ =

[
L1L3(P∞),−1

]
∞ = 0.

For p = 2, take P2 = (t, u1, u2, u3) where

t = 1, u1 = 2
[2
d

]
, u22 = c2d′ + u21, u

2
3 = a2n+ 2du21

with γu2 ≡ 1 mod 4. Since

(bd′β + αu3)(bd
′β − αu3) = b2d′

2
β2 − α2(a2n+ 2du21)

=b2d′(2γ2 − dα2)− α2(a2n+ 2du21) = 2b2d′γ2 − α2(2c2n+ 2du21)

=2
(
(bd′γ)2 − nα2u22

)
/d′ ≡ 0 mod 16,

we may choose u3 such that 8 | bd′β + αu3. Then

〈Λ,Λ′〉2 =
[
L1L3(P2),−1

]
2
=

[
(u1 − u2)(bd′β + αu3 − 2γu2),−1

]
2

=
[
−2γu2(u1 − u2),−1

]
2
= [2,−1]2 +

[
u2 − u1,−1

]
2

=[γ,−1]2 + [1− u1γ,−1]2

=
[−1
γ

]
+
[
1− 2

[2
d

]
,−1

]
2
=

[−1
γ

]
+

[2
d

]
.

Since dα2 ≡ −d′β2 mod γ, we have
(

−1
γ

)
=

(
n
γ

)
=

(
γ
n

)
and 〈Λ,Λ′〉2 =

[
γ
n

]
+
[
2
d

]
.

For q | a, take Pq = (1, 0, u2, a
√
n) where u22 = c2d′. Since

(bd′β − 2γu2)(bd
′β + 2γu2) = b2d′

2
β2 − 4c2d′γ2

≡2c2d′(d′β2 − 2γ2) = −2c2nα2 mod q,

we may choose u2 such that q | bd′β + 2γu2 if q | α. If q | bd′β ± 2γu2, then q | β,
which contradicts to the primitivity of (α, β, γ). Therefore, q - bd′β−2γu2. If q - α,
clearly we have q - bd′β ± 2γu2. Then

L1L3(Pq) = −u2(bd′β − 2γu2 + aα
√
n) ∈ Z×

q

and
〈Λ,Λ′〉q =

[
L1L3(Pq),−1

]
q
= 0.

Similarly, 〈Λ,Λ′〉q = 0 for q | b. Hence

〈Λ,Λ′〉 = 〈Λ,Λ′〉2 =
[γ
n

]
+

[2
d

]
.
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Since Rn = (A,b2), we have A[2]∩A2 =
{
[(1)], [(2d,

√
−n)]

}
. Since b2 ∈ ImA,

we have
ImRn = ImA =

{
u : 1Tu = 0

}
.

By Lemma 2.2, [(2d,
√
−n)] ∈ A4 if and only if

bγ =
([ γ
p1

]
, . . . ,

[ γ
pk

])T

∈ ImRn,

if and only if

〈Λ,Λ′〉 =
[γ
n

]
+
[2
d

]
= 1Tbγ +

[2
d

]
=

[2
d

]
.

In conclusion, the Cassels pairing is non-degenerate if and only if h8(n) =
[
2
d

]
. �

5. Equidistribution of residue symbols

5.1. Residue symbols.

Definition 5.1. Denote by I =
√
−1 and Z[I] the ring of Gauss integers.

(1) A prime element λ of Z[I] is called Gaussian if it is not a rational prime.
(2) An integer λ ∈ Z[I] is called primary if λ ≡ 1 mod (2 + 2I).

Recall the quadratic and quartic residue symbols on Z[I], see [Hec81, p. 196] and
[IR90]. Denote by N = NQ(I)/Q the norm from Q(I) to Q. For any α ∈ Z[I] and
prime element λ prime to 1 + I, define

(5.1)
(α
λ

)
2
∈ {0,±1} such that

(α
λ

)
2
≡ α

Nλ−1
2 mod λ.

For any element λ prime to 1 + I with a prime decomposition λ =
∏k

i=1 λk, define(
α
λ

)
2
=

∏k
i=1

(
α
λi

)
2
.

For any α ∈ Z[I] and primary prime λ, define

(5.2)
(α
λ

)
4
∈ {0,±1,±I} such that

(α
λ

)
4
≡ α

Nλ−1
4 mod λ.

For any primary element λ with a primary prime decomposition λ =
∏k

i=1 λk,
define

(
α
λ

)
4
=

∏k
i=1

(
α
λi

)
4
. Let λ and λ′ be two coprime primary primes. Then we

have the quartic reciprocity law( λ
λ′

)
4
=

(λ′
λ

)
4
(−1)

Nλ−1
4 ·Nλ′−1

4 .

Certainly,
(

α
λ

)
2
=

(
α
λ

)2

4
.

Let p ≡ 1 mod 4 be a rational prime. Let a be a rational integer such that(
a
p

)
= 1. By abuse of notations, we define

(5.3)
(a
p

)
4
:=

(a
λ

)
4
,

where λ is a primary prime such that Nλ = p. For any rational integer d = p1 · · · pk
with pi ≡ 1 mod 4, define

(
a
d

)
4
=

∏k
i=1

(
a
pi

)
4
.
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5.2. Analytic results. Let F be a number field with degree n, discriminant ∆
and ring of integers O. Denote by N = NF/Q the norm from F to Q.

For an ideal f of O, denote by I(f) the group of fractional ideals prime to f and
Pf the subgroup consisting of principal fractional ideals (γ) = γO with totally real
γ ≡ 1 mod f. A character χ of I(f)/Pf is called a character modulo f. It can be
viewed as a character on I(f). If a is a fractional ideal not coprime to f, define
χ(a) = 0. Denote by

(5.4) Λ(a) =

{
logNp if a = pm with m > 1;

0 otherwise
the Mangoldt function. Define

(5.5) ψ(x, χ) =
∑

Na6x

χ(a)Λ(a).

Denote by χ0 the principal character on I(f)/Pf.

Proposition 5.2 ([IK04, p. 112, Exercise 7]). If χ 6= χ0 is a character modulo f
and 1 6 T 6 x, then

ψ(x, χ) = −
∑

|Im ρ|6T

xρ − 1

ρ
+O

(
T−1x log x log(xnNf)

)
.

Here ρ runs over all the zeros of L(s, χ) with 0 6 Re ρ 6 1.

Similar to the classical process on the estimation of ψ(x, χ) as in [Dav80, § 19],
we derive the following explicit formula

(5.6) ψ(x, χ) = −x
β′

β′ +R(x, T )

with

R(x, T )� x log2(xNf) exp

(
− c1 log x

log(TNf)

)
+ T−1x log x · log(xnNf) + x

1
4 log x.

We also use the estimation on the number of zeroes in [Lan18, Satz LXXI]. Here c1
is a positive constant and the term −xβ′

β′ occurs only if χ is a real character such
that L(s, χ) has a zero β′ satisfying

β′ > 1− c2
logNf

with c2 a positive constant.
The Siegel Theorem over F as follows is [Fog61, Theorem] and [Fog63, Satz].

Proposition 5.3. Let χ be a character modulo an integral f and D = |∆|Nf > 1.
(1) There is a positive constant c3 = c3(n) such that in the region

Re (s) > 1− c3
logD(2 + |Im s|)

>
3

4

there is no zero of L(s, χ) in the case of a complex χ. For at most one real
χ′, there may be a simple zero β′ of L(s, χ′) in this region.

(2) For any ε > 0, there exists a positive constant c4 = c4(n, ε) such that
1− β′ > c4(n, ε)D

−ε.

The Page Theorem over F as follows is a special case of [HR95, § 3, Theorem A].
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Proposition 5.4. For any Z > 2 and a suitable constant c5, there is at most a
real primitive character χ modulo f with Nf 6 Z such that L(s, χ) has a real zero
β satisfying

β > 1− c5
logZ

.

5.3. Equidistribution of residue symbols. Recall that abc = qt11 · · · q
tℓ
ℓ is the

prime decomposition of abc. Let α = (α1, · · · , αk) be a vector with αi ∈ {1, 5, 9, 13}
and α1 · · ·αk ≡ 1 mod 8. Let B = (Bij)k×k ∈ Mk(F2) be a symmetric matrix
with rank k − 2 and B1 = 0. Then KerB = {0,1,d,d+ 1} for some vector
d = (s1, · · · , sk)T with sk = 0.

Denote by Ck(x, α,B) the set of all n = p1 · · · pk satisfying
• n 6 x and p1 < · · · < pk;
• pi ≡ αi mod 16 for all 1 6 i 6 k;
•
[
pj

pi

]
= Bij for all 1 6 i < j 6 k;

•
(

pi

qj

)
= 1 for all 1 6 i 6 k and 1 6 j 6 ℓ;

•
(

d′

d

)
4

(
d
d′

)
4
= −1, where d = ps11 · · · p

sk
k and d′ = n/d,

and denote by C ′
k(x, α,B) the set of all η = λ1 · · ·λk satisfying

• Nη 6 x and Nλ1 < · · · < Nλk;
• λi ∈ P and Nλi ≡ αi mod 16 for all 1 6 i 6 k;
•
[
Nλj

Nλi

]
= Bij for all 1 6 i < j 6 k;

•
(

Nλi

qj

)
= 1 for all 1 6 i 6 k and 1 6 j 6 ℓ;

•
(

δ′

δ

)
2
= −1, where δ = λs11 · · ·λ

sk
k and δ′ = η/δ.

Here, P is the set of primary primes in Z[I] with positive imaginary part.
In this section, we will give an estimation of the number of Ck(x, α,B).

Lemma 5.5. There is a bijection
C ′

k(x, α,B) −→ Ck(x, α,B), η 7→ Nη.

Proof. For any η = λ1 · · ·λk ∈ C ′
k(x, α,B), denote by pi = Nλi. By the quartic

reciprocity law, we have( pi
pj

)
4

(pj
pi

)
4
=

(λiλi
λj

)
4

(λjλj
λi

)
4
=

(λi
λj

)
4

(λi
λj

)
4

(λj
λi

)
4

(λj
λi

)
4

=
(λj
λi

)
4

(λj
λi

)
4

(λj
λi

)
4

(λj
λi

)
4
=

(λj
λi

)
2

(λj
λi

)
4

(λj
λi

)
4
=

(λj
λi

)
2
.

Therefore, (d′
d

)
4

( d
d′

)
4
=

(δ′
δ

)
2
= −1,

where d = Nδ and d′ = Nδ′. Hence Nη ∈ Ck(x, α,B).
For any rational prime p ≡ 1 mod 4, there is exactly one primary prime in P

with norm p. This gives the surjectivity. The injectivity is trivial. �

Denote by Tk(x) the set of all n = p1 · · · pk−1 satisfying
• n 6 x and p1 < · · · < pk−1;
• pi ≡ αi mod 16 for all 1 6 i 6 k − 1;
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•
[
pj

pi

]
= Bij for all 1 6 i < j 6 k − 1;

•
(

pi

qj

)
= 1 for all 1 6 i 6 k − 1 and 1 6 j 6 ℓ,

and denote by T ′
k(x) the set of all η = λ1 · · ·λk−1 satisfying

• Nη 6 x and Nλ1 < · · · < Nλk−1;
• λi ∈ P and Nλi ≡ αi mod 16 for all 1 6 i 6 k − 1;
•
[
Nλj

Nλi

]
= Bij for all 1 6 i < j 6 k − 1;

•
(

Nλi

qj

)
= 1 for all 1 6 i < k and 1 6 j 6 ℓ.

The independence property of Legendre symbols in [Rho09] implies that

(5.7) #Tk(x) ∼ 2−(ℓ+3)(k−1)−(k−1
2 ) ·#Ck−1(x),

where Ck(x) is the set of all positive square-free integers n 6 x with exactly k prime
factors.

Lemma 5.6. There is a bijection
T ′
k(x) −→ Tk(x), η 7→ Nη.

Proof. For any rational prime p ≡ 1 mod 4, there is exactly one primary prime in
P with norm p. This proves the surjectivity. The injectivity is trivial. �

Theorem 5.7. Notations as above with k > 1. We have

#Ck(x, α,B) ∼ 2−kℓ−3k−1−(k2) ·#Ck(x),

where Ck(x) is the set of all positive square-free integers n 6 x with exactly k prime
factors.

Proof. Similar to [CO89], we consider the comparison map
f : C ′

k(x, α,B) −→ T ′
k(x), λ1 · · ·λk 7→ λ1 · · ·λk−1.

Let Q1 be the product of all primary primes µ ∈ P dividing abc, and Q2 the product
of all prime q | abc with q ≡ 3 mod 4. For any η = λ1 · · ·λk−1 ∈ T ′

k(x), denote by
cη = 16N(ηQ1)Q2Z[I]. It’s easy to see that if β satisfies

• Nβ ≡ αk mod 16;
•
[

Nβ
Nλi

]
= Bik for all 1 6 i 6 k − 1;

•
(

Nβ
qj

)
= 1 for all 1 6 j 6 ℓ;

•
(

β
δ

)
2
= −

(
η/δ
δ

)
2
, where δ = λs11 · · ·λ

sk
k ,

then so is β′ ≡ β mod 16N(ηQ1)Q2. Denote by
Aη ⊆ (Z[I]/cη)×

the classes of such β. Then η lies in the image of f if and only if there exists θ ∈ P
such that Nλk−1 < Nθ 6 x/Nη and θmod cη ∈ Aη by noting that sk = 0.

Lemma 5.8. Let χ1, χ2 : G → F2 be two different non-trivial quadratic character
on a finite group G. Then the size of χ−1

1 (i) ∩ χ−1
2 (j) is #G/4 for any i, j ∈ F2.

Proof. The sizes of χ−1
1 (i) and χ−1

2 (j) are #G/2. Since χ1 6= χ2, these two sets
always have a common element, which means that (χ1, χ2) : G → F2

2 is surjective.
The result then follows. �
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Lemma 5.9. Assume that π ∈ P and p = Nπ. Then
(

x
π

)
2

and
(

Nx
p

)
are different

non-trivial quadratic characters on
(
Z[I]/pZ[I]

)×.

Proof. Since N :
(
Z[I]/pZ[I]

)× → (Z/pZ)× is surjective,
(

Nx
p

)
is non-trivial. Let

γ ∈ Z[I] be an element such that πγ ≡ 1 mod π. Let x = πγ+απγ for some α ∈ Z
coprime to p. Then (x

π

)
2
=

(πγ
π

)
2
= 1.

Denote by A = (πγ)2 + (πγ)2. Then N(x) ≡ αA mod p and(Nx
p

)
=

(αA
p

)
.

Hence
(

x
π

)
2
6=

(
Nx
p

)
by taking

(
α
p

)
= −

(
A
p

)
. �

Lemma 5.10. Let φ(η) be the cardinality of G = (Z[I]/cη)×. Then

#Aη = 2−k−ℓ−4φ(η).

Proof. By the Chinese Remainder Theorem, we have a natural isomorphism

G ∼=
(

Z[I]
16Z[I]

)×

×
k−1∏
i=1

(
Z[I]

NλiZ[I]

)×

×
∏
µ|Q1

(
Z[I]

NµZ[I]

)×

×
∏
q|Q2

(
Z[I]
qZ[I]

)×

β 7→ (β0, β1, · · · , βk−1, β
′
µ, β

′
q).

Then β ∈ Aη if and only if
(1) β0 ≡ 1 mod 2 + 2I and Nβ0 ≡ αk mod 16;
(2)

[
Nβi

Nλi

]
= Bik for all 1 6 i 6 k − 1;

(3)
(

Nβ′
µ

Nµ

)
= 1 for all µ | Q1;

(4)
(

Nβ′
q

q

)
= 1 for all q | Q2;

(5)
∏

si=1

(
βi

λi

)
2
= −

(
η/δ
δ

)
2
.

(1) selects 1
4×

1
4 number of elements in

(
Z[I]/16Z[I]

)×. Note that
(
Z[I]/λiZ[I]

)× ∼=
(Z/NλiZ)×, each conditions in (2)–(4) selects half number of elements in each
corresponding component.

To treat (5), we choose β1, · · · , βk−1 as following. Since sk = 0, there is
some sj = 1 for 1 6 j 6 k − 1. For i = 1, 2, · · · , j − 1, j + 1, · · · , k − 1,
we choose βi ∈

(
Z[I]/NλiZ[I]

)× satisfying (2), and there are half number of(
Z[I]/NλiZ[I]

)× choices. With above chosen β1, · · · , βj−1, βj+1, · · · , βk−1, apply-
ing Lemmas 5.8 and 5.9 to π = λj , (5) and

[
Nβj

Nλj

]
= Bjk selects 1

4 number of

elements in
(
Z[I]/NλjZ[I]

)×. Hence

#Aη

φ(η)
=

1

16
× 1

2k−1
× 1

2ℓ
× 1

2
= 2−k−ℓ−4. �
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For any η ∈ T ′
k(x), denote by h(η) the number of primes θ ∈ P such that

Nλk−1 < Nθ 6 x/Nη and θmod cη ∈ Aη. Then we have

(5.8) #C ′
k(x, α,B) =

∑
η∈T ′

k(x)

h(η).

Denote by

M1 = (log x)100 and M2 = exp

(
log x

(log log x)100

)
.

We will use
∗∑

Nη∈S

to denote a summation over η ∈ T ′
k(x) with Nη ∈ S.

Lemma 5.11. We have
∗∑

20<Nη6M1

Li(x/Nη) = o

(
x(log log x)k−1

log x

)
,

∗∑
M2<Nη6x

k−1
k

Li(x/Nη) = o

(
x(log log x)k−1

log x

)
,

∗∑
M1<Nη6M2

Li(x/Nη) ∼ #T ′
k(x)

k − 1
log log x.

Proof. The proof is similar to [CO89, Lemma 3.1]. �

Denote by π(x) the number of prime ideals in Z[I] with norm less than or equal
x. Then the prime ideal theorem over Z[I] tells π(x) ∼ Li(x). Certainly, h(η) 6
π(x/Nη). Then we have

∗∑
Nη620

h(η)� Li(x),

∗∑
20<Nη6M1

h(η) = o

(
x(log log x)k−1

log x

)
,

∗∑
M2<Nη6x

k−1
k

h(η) = o

(
x(log log x)k−1

log x

)(5.9)

by Lemma 5.11. If Nη > x
k−1
k , then Nλk−1 > x

1
k and x/Nη < x

1
k < Nλk−1.

Therefore, h(η) = 0 and

(5.10)
∗∑

x
k−1
k <Nη6x

h(η) = 0.

Denote by π′(y,B, a) the number of primes θ ∈ Z[I] such that Nθ 6 y and
θmod a ∈ B ⊆

(
Z[I]/a

)×. Since θ ∈ P has positive imaginary part, we have

h(η) =
1

2

(
π′(x/Nη,Aη, cη)− π′(Nλk−1,Aη, cη)

)
+O(

√
x).
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Here the error term origins from −p with p ≡ 3mod 4 rational prime, and the
implicit constant is absolute. By (5.8), (5.9), (5.10) and the facts that

∗∑
M1<Nη6M2

π′(Nλk−1,Aη, cη)�M2Li(M2) = o

(
x(log log x)k−1

log x

)
and M2 is of much small order than x

1
4 , we obtain

(5.11) #C ′
k(x, α,B) ∼ 1

2

∗∑
M1<Nη6M2

π′(x/Nη,Aη, cη)

with error term o
(
#Ck(x)

)
.

By [Lan94, Theorem 6.1], we have an exact sequence

(5.12) 1 −→ Z[I]× −→ (Z[I]/cη)×
Φ−→ I(cη)/Pcη −→ 1

where Φ(γ) = (γ)modPcη . Denote by π(y,B, c) the number of prime ideals p such
that Np 6 y and pmodPc ∈ B ⊆ I(c)/Pc. Denote by Tη = Φ(Aη). Then
(5.13) π′(y,Aη, cη) = π(y,Tη, cη) and #Aη = #Tη

by noting that every prime ideal in a class of T corresponds to exactly one primary
prime element.

Define
ψ(y,B, c) =

∑
Na6y

amodPc∈B

Λ(c).

Then we have the standard asymptotic relation ψ(y,B, c) ∼ log y · π(y,B, c).
Therefore,

(5.14) 2 log x ·#C ′
k(x, α,B) ∼

∗∑
M1<Nη6M2

ψ(x/Nη,Tη, cη)

by (5.11) and (5.13). By the orthogonality of characters and the exact sequence
(5.12), we get

ψ(y,Tη, cη) =
4

φ(η)

∑
χ

ψ(y, χ)
∑

amodPcη∈Tη

χ(a),

where χ runs over all characters of I(cη)/Pcη and

ψ(y, χ) =
∑

Na6y

Λ(a)χ(a).

Therefore,
(5.15) 2 log x ·#C ′

k(x, α,B) ∼ S1 + S2,

where

S1 =

∗∑
M1<Nη6M2

4#Tη

φ(η)
ψ(x/Nη, χ0),

S2 =

∗∑
M1<Nη6M2

4

φ(η)

∑
χ ̸=χ0

ψ(x/Nη, χ)
∑

amodPcη∈Tη

χ(a).
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The main term is

S1 = 2−k−ℓ−2
∗∑

M1<Nη6M2

ψ(x/Nη, χ0) by Lemma 5.10 and (5.13)

∼ 2−k−ℓ−2
∗∑

M1<Nη6M2

log(x/Nη)Li(x/Nη)

∼ 2−k−ℓ−2 log x

∗∑
M1<Nη6M2

Li(x/Nη)

∼ log x · log log x
(k − 1) · 2k+ℓ+2

·#T ′
k(x) by Lemma 5.11

∼ log x · log log x
(k − 1) · 2kℓ+3k+(k2)

·#Ck−1(x) by Lemma 5.6 and (5.7)

∼ 2−kℓ−3k−(k2) log x ·#Ck(x) by (1.1).
By (5.14) and Lemma 5.5, this theorem is reduced to show that S2 is an error term.

Denote by f the conductor of the exceptional primitive conductor with Z =
256M2 in Page Theorem 5.4. Then S2 = S3 + S4, where

S3 =

∗∑
M1<Nη6M2

f|cη

4

φ(η)

∑
χ ̸=χ0

ψ(x/Nη, χ)
∑

amodPcη∈Tη

χ(a),

S4 =

∗∑
M1<Nη6M2

f-cη

4

φ(η)

∑
χ ̸=χ0

ψ(x/Nη, χ)
∑

amodPcη∈Tη

χ(a).

We have

S3 �
∗∑

M1<Nη6M2
f|cη

ψ(x/Nη, χ0)� x

∗∑
M1<Nη6M2

f|cη

(Nη)−1

=
x

Nf

∑
M1<tNf6M2

t−1
∗∑

f|cη
Nη=tNf

1� x logM2

Nf
.

By Page Theorem 5.4 for Z = 256M2, there is a positive constant c6 such that the
Siegel zero β of the primitive character with modulus f has the property

β > 1− c6
log 256M2

.

By Siegel Theorem 5.3 for F = Q(I), there is a constant c4 = c4(2, 1/200) > 0 such
that

β 6 1− c4(4Nf)−1/200.

Therefore, Nf� (logM2)
100 and S3 � x(logM2)

−99 is an error term.
Since there is no Siegel zero in S4, we can apply the explicit formula (5.6) with

T = (Nη)4 to all the ψ(x/Nη, χ) in S4. Then we obtain

ψ(x/Nη, χ)�x(Nη)−1(log x)2 exp

(
−c7 log(x/Nη)

logNη

)
+ x(Nη)−5(log x)2 + x1/4(Nη)−1/4 log(x/Nη)
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and S4 � S5 + S6 + S7, where

S5 =

∗∑
M1<Nη6M2

f-cη

x(Nη)−1(log x)2 exp

(
−c7 log(x/Nη)

logNη

)
,

� x(log x)2 exp
(
−c8(log log x)100

)
·

∗∑
M1<Nη6M2

f-cη

(Nη)−1

� x(log x)3 exp
(
−c8(log log x)100

)
,

S6 =

∗∑
M1<Nη6M2

f-cη

x(Nη)−5(log x)2 � x(log x)2M−3
1 � x(log x)−200,

S7 =

∗∑
M1<Nη6M2

f-cη

x1/4(Nη)−1/4 log(x/Nη)� x1/4 log x ·M3/4
2 � x1/2.

Hence S4 is also an error term. This finishes the proof. �

6. Distribution result

Assume that Sel2(E/Q) ∼= (Z/2Z)2. Let n = p1 · · · pk be an element in Qk(x)
with p1 < · · · < pk. Then n ∈Pk(x) if and only if h4(n) = 1 and h8(n) ≡ d−1

4 mod
2, where d is a certain divisor of n. As shown in the proof of Theorem 1.1(B), the
rank of A = An is k − 1 or k − 2.

Assume that rankA = k−2. As shown in the proof of Theorem 1.1(B), h4(n) = 1
if and only if b2 6∈ ImA. In this case, d = ps11 · · · p

sk
k ≡ 5 mod 8, where KerA =

{0,1,d,d+ 1} and d = (s1, . . . , sk)
T. We may assume that sk = 0. By [JY11,

Theorem 3.3(ii)], h8(n) = 1 if and only if

(6.1)
( d
d′

)
4

(d′
d

)
4
= −1,

where d′ = n/d.
Assume that rankA = k − 1. Then h4(n) = 1, b2 ∈ ImA and d = ps11 · · · p

sk
k ,

where Ad = b2 and d = (s1, · · · , sk)T. By [JY11, Theorem 3.3(iii), (iv)], h8(n) = 1
if and only if (2d

d′

)
4

(2d′
d

)
4
= (−1)

n−1
8

where d′ = n/d.

Proof of Theorem 1.3. For k > 2, let B be the set of all symmetric B ∈ Mk(F2)
with rank k− 2 and B1 = 0. Let I be the set of all vectors α = (α1, . . . , αk) with
αi ∈ {1, 5, 9, 13} and α1 · · ·αk ≡ 1 mod 8. Denote by IB the set of all α ∈ I such

that b(α) /∈ ImB, where b(α) =

([
2
α1

]
, . . . ,

[
2
αk

])T

. Since α1 · · ·αk ≡ 1 mod 8,

we have b(α)T1 = 0. For any B ∈ B and α ∈ IB, Ck(x, α,B) is the set of all
n = p1 · · · pk ∈Pk(x) satisfying

• p1 < · · · < pk and An = B;
• pi ≡ αi mod 16 for all 1 6 i 6 k;
•
(

pi

qj

)
= 1 for all 1 6 i 6 k and 1 6 j 6 ℓ
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by (6.1). Moreover, if B ∈ B and α /∈ IB, then Ck(x, α,B)∩Pk(x) = ∅. Therefore,
the number N1(x) of those n ∈Pk(x) with rankAn = k − 2 is

(6.2) N1(x) =
∑
B∈B

∑
α∈IB

#Ck(x, α,B) ∼ 2−kℓ−3k−1−(k2) ·#Ck(x) ·
∑
B∈B

#IB

by Theorem 5.7.
Now we count the number of IB with given B. Given b = (b1, · · · , bk)T 6∈ ImB

with bT1 = 0, the number of α with b(α) = b is 2k. This is because αi = 1, 9
if bi = 0 and αi = 5, 13 if bi = 1. Since B is symmetric and B1 = 0, the size of
ImB ⊂ Hn :=

{
u : 1Tu = 0

}
is 2k−2. If bT1 = 0 and rank (B,b) = k − 1, then

b ∈ Hn − ImB has 2k−2 choices. Consequently, #IB = 22k−2 and then

N1(x) ∼ 2−kℓ−k−3−(k2) ·#Ck(x) ·#B.

Proposition 6.1 ([BCJ+06]). Denote by Bk,r the set of k×k symmetric matrices
over F2 with rank r. Then

#Bk,r = ur+12
(r+1

2 ) ·
k−r−1∏
i=0

2k − 2i

2k−r − 2i
,

where ui is defined in Theorem 1.3.

The left-top minor of B of order k − 1 induces a bijection B → Bk−1,k−2. So
#B = #Bk−1,k−2 and we get

N1(x) ∼ 2−kℓ−k−3(1− 21−k)uk−1 ·#Ck(x).

The number N2(x) of n ∈Pk(x) with rankAn = k−1 can be obtained similarly:
N2(x) ∼ 2−k−kℓ−2uk ·#Ck(x).

We refer to our previous paper [Wan17] for more details. This finishes the proof of
this theorem. �
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